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- MOTIVATIONS -

CO, Saturation is Flow-rate Dependent
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— Core characterization —

o

Absolute Permeabilty ~ GCEP

e Sample = Berea Sandstone

e Absolute permeability:

AP pressure drop (psi)

- Injection of brine (10 000 ppm NaCl = 10 g/L)

- Measure AP as a function of the Flow Rate q
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— Core characterization — I
Porosity, Permeability GCEP
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o / Porosity and permeability have \
important spatial variations due to
the pore-scale structure of the

rock sample.
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. —
— 2-phase flow experiments —
Experimental conditions GCEP

e Physical properties of CO, and brine
at reservoir conditions:

e Co-injection of supercritical CO, and brine
at reservoir conditions:

CO, saturated CO,
brine
o o Liquid Supercritical
T°=50°C u=0.558 cP u=0.046 cP
I:,pore =12.4 MPa d=0.990 g/cm? d=0.28 g/cm?

Viscosity ratio v = ./ W ooy = 12.1

— corresponds to a depth of 17700 m

(for V T°=0.3°C/100m and V P=820 kPa/100m) | DENSIty ratio: dys,. /deo, = 3.5

Bond number ~ 0.2

Capillary number ~ [2.10°6 -10-]



— 2-phase flow experiments —
Experimental procedure GCEP

e At a given total Flow Rate FR(CO, )+ FR(brine)
- the core is initially saturated with brine
- CO, and brine are injected at a given fractional flow

_ FR(brine)

Jorme = FR(CO, ) + FR(brine)
) FR(CO,)

Jeo, = FR(CO, ) + FR(brine)

- wait until steady state is reached (HOW LONG?)
— stabilization of pressure drop and saturation

- measure AP, saturation

-increase the proportion of CO, (fco, /)

e Run the same procedure at different total flow rates: 2.6, 1.2 and 0.5 mL/min



OUTLET INLET

Injection of 100% CO, @ 2mL/min @
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{- Results - CO, saturation at different fractional flow J
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e The higher the proportion of CO,, A

the higher the CO, saturation.

e Lower values when the flow rate

\_ decreases. )
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- Results -
Total flow rate = 2.6 mL/min o,

fCO2 0.25 0.33




OUTLET INLET

- Results -
Total flow rate = 1.2 mL/min o,




- Results - iy S
Total flow rate = 0.5 mL/min o,
f co, 0.16 0.30 0.42 0.60

0.045 0.105 0.177

0.271




- Results -

The CO, saturation is flow rate dependant
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(At any given fractional \

flow the CO, saturation is
a function of the flow rate

e The higher the flow rate,
the higher the CO,
saturation

e Results not consistent
with classical multi-phase
flow theory where
saturation — and thus
relative permeability — are
independent of flow rate
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- Results -
The Relative Permeability curve is flow rate dependant
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- Results -
The end-point brine saturation is flow rate dependant
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= ReSU ItS - OUTLET INLET

Link Permeability - Saturation?? @
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(High permeability paths correspond to\
high CO, saturation close to inlet
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- CONCLUSIONS - GCEP

4 N

e We built a new core flooding experimental
setup

e The setup allows us to continuously inject
CO, and Brine at reservoir conditions

o /




|
- CONCLUSIONS (2) - GCEP

4 N

e The first experiments confirm the predicted
dependence of CO, saturations

e The spatial variations of the permeability
(heterogeneities of the pore structure) play a

fundamental role in the distribution of CO,

/




- CONCLUSIONS (3) - GCEP

e Numerical simulations are needed to better
understand these observations

e Sub-core scale permeability maps are needed as
iInput in the simulations /




- FUTURE WORK - GCEP

* More experiments to confirm and more precisely \
describe the flow rate effect.

e Experimental investigation of imbibitions, relative
permeability hysteresis and capillary trapping

* Image the displacement front

e Measure of the relative permeability curve on “real

Ksamples” (e.g Otway project, Australia) /
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