## Seventh Annual Conference on Carbon Capture & Sequestration

#### Relative Permeability Properties of the CO<sub>2</sub>/Brine System in Saline Aquifers: An Experimental Study

Jean-Christophe Perrin, Michael Krause and Sally M. Benson Stanford University

May 5 – 8, 2008 • Sheraton Station Square • Pittsburgh, Pennsylvania

### - OVERVIEW -

- -Motivations
- -Experimental Setup
- -Core characterization
- -2-phase flow : experimental conditions/procedure
- -Results
- -Conclusions

## - MOTIVATIONS -

## CO<sub>2</sub> Saturation is Flow-rate Dependent



Distance along the core (cm)





# Core characterization – Absolute Permeability



- Sample = Berea Sandstone
- Absolute permeability:
  - Injection of brine (10 000 ppm NaCl  $\approx$  10 g/L) T°= 50°C , P<sub>pore</sub> = 12.4 MPa



- Measure  $\Delta P$  as a function of the Flow Rate q





## Core characterization – Porosity, Permeability





Permeability (mD)



# 2-phase flow experiments – Experimental conditions



• Co-injection of supercritical CO<sub>2</sub> and brine at *reservoir conditions*:

T°= 50°C P<sub>pore</sub> = 12.4 MPa

 $\rightarrow$  corresponds to a depth of 1700 m (for  $\nabla$  T°=0.3°C/100m and  $\nabla$  P=820 kPa/100m)  Physical properties of CO<sub>2</sub> and brine at reservoir conditions:

| CO <sub>2</sub> saturated<br>brine | CO <sub>2</sub>           |
|------------------------------------|---------------------------|
| Liquid                             | Supercritical             |
| $\mu = 0.558 \text{ cP}$           | $\mu = 0.046 \text{ cP}$  |
| $d = 0.990 \text{ g/cm}^3$         | $d = 0.28 \text{ g/cm}^3$ |

Viscosity ratio  $v = \mu_{brine} / \mu_{CO2} = 12.1$ 

Density ratio  $d_{brine} / d_{CO2} = 3.5$ 

Bond number  $\sim 0.2$ 

Capillary number ~  $[2.10^{-6} - 10^{-5}]$ 



## 2-phase flow experiments – Experimental procedure



- At a given total Flow Rate  $FR(CO_2) + FR(brine)$  :
  - the core is initially saturated with brine
  - $CO_2$  and brine are injected at a given fractional flow

$$f_{brine} = \frac{FR(brine)}{FR(CO_2) + FR(brine)}$$
$$f_{CO_2} = \frac{FR(CO_2)}{FR(CO_2) + FR(brine)}$$

- wait until steady state is reached (HOW LONG?)
  - → stabilization of pressure drop and saturation

- measure  $\Delta P$ , saturation

-increase the proportion of  $\text{CO}_2(f_{CO_2} \nearrow)$ 

• Run the same procedure at different total flow rates: 2.6, 1.2 and 0.5 mL/min



#### - Results - CO<sub>2</sub> saturation at different fractional flow









### - Results -The CO<sub>2</sub> saturation is flow rate dependent



- At any given fractional flow the CO<sub>2</sub> saturation is a function of the flow rate
- The higher the flow rate, the higher the CO<sub>2</sub> saturation
- Results not consistent with classical multi-phase flow theory where saturation – and thus relative permeability – are independent of flow rate

### - Results -The Relative Permeability curve is flow rate dependent

















- We built a new core flooding experimental setup
- The setup allows us to continuously inject CO<sub>2</sub> and Brine at reservoir conditions





- The first experiments confirm the predicted dependence of CO<sub>2</sub> saturations
- The spatial variations of the permeability (heterogeneities of the pore structure) play a fundamental role in the distribution of CO<sub>2</sub>





- Numerical simulations are needed to better understand these observations
- Sub-core scale permeability maps are needed as input in the simulations



### - FUTURE WORK -



- More experiments to confirm and more precisely describe the flow rate effect.
- Experimental investigation of imbibitions, relative permeability hysteresis and capillary trapping
- Image the displacement front
- Measure of the relative permeability curve on "real samples" (e.g Otway project, Australia)

## - AKNOWLEDGMENTS -

- Sally Benson
- Global Climate and Energy Project at Stanford
- Organizing committee of the CCS conference