Seventh Annual Conference on Carbon Capture & Sequestration

Relative Permeability Properties of the CO ²/Brine System in Saline Aquifers: An Experimental Study

Jean-Christophe Perrin, Michael Krause and Sally M. Benson Stanford University

May 5 – 8, 2008 • Sheraton Station Square • Pittsburgh, Pennsylvania

- OVERVIEW -

- -Motivations
- -Experimental Setup
- -Core characterization
- -2-phase flow : experimental conditions/procedure
- -Results
- -Conclusions

- MOTIVATIONS -

CO₂ Saturation is Flow-rate Dependent

Distance along the core (cm)

– Core characterization – Absolute Permeability

- \bullet Absolute permeability:
	- Injection of brine (10 000 ppm NaCl \approx 10 g/L) T° = 50 $^{\circ}$ C, P_{pore} = 12.4 MPa

- Measure $\varDelta P$ as a function of the Flow Rate \bm{q}

– Core characterization – Porosity, Permeability

Permeability (mD)

– 2-phase flow experiments – Experimental conditions

 \bullet Co-injection of supercritical CO $_2$ and brine $^$ at *reservoir conditions*:

> **T°= 50°C 50°CPpore = 12.4 MPa MPa**

 \rightarrow corresponds to a depth of 1700 m (for $\nabla T^{\circ} = 0.3^{\circ}C/100m$ and $\nabla P = 820$ kPa/100m) \bullet Physical properties of CO $_2$ and brine $^$ at reservoir conditions:

Viscosity ratio $v = \mu_{\text{brine}} / \mu_{\text{CO2}} = 12.1$

Density ratio $d_{\text{brine}} / d_{\text{CO2}} = 3.5$

Bond number ~ 0.2

Capillary number \sim [2.10⁻⁶ -10⁻⁵]

– 2-phase flow experiments – Experimental procedure

- \bullet At a given total Flow Rate $FR(CO_2)$ + $FR(brine)$:
	- the core is initially saturated with brine
- CO ²and brine are injected at a *given fractional flow*

$$
f_{\text{brine}} = \frac{FR(\text{brine})}{FR(CO_2) + FR(\text{brine})}
$$
\n
$$
f_{CO_2} = \frac{FR(CO_2)}{FR(CO_2) + FR(\text{brine})}
$$

- wait until steady state is reached (HOW LONG?)
	- \rightarrow stabilization of pressure drop and saturation

- measure Δ P, saturation

-increase the proportion of $CO₂$ ($f_{CO₂}$)

 \bullet Run the same procedure at different total flow rates: 2.6, 1.2 and 0.5 mL/min

- Results - CO $_{\rm 2}$ saturation at different fractional flow

- Results - The $CO₂$ saturation is flow rate dependant

- \bullet At any given fractional flow the $CO₂$ saturation is a function of the flow rate
- The higher the flow rate, the higher the $CO₂$ saturation
- \bullet Results not consistent \bullet with classical multi-phase flow theory where saturation – and thus relative permeability – are independent of flow rate

The Relative Permeability curve is flow rate dependant - Results -

1

- We built a new core flooding experimental setup \bullet
- The setup allows us to continuously inject $CO₂$ and Brine at reservoir conditions \bullet

- \bullet The first experiments confirm the predicted dependence of $CO₂$ saturations
- The spatial variations of the permeability (heterogeneities of the pore structure) play a fundamental role in the distribution of $CO₂$

- Numerical simulations are needed to better understand these observations
- Sub-core scale permeability maps are needed as input in the simulations

- FUTURE WORK -

- More experiments to confirm and more precisely describe the flow rate effect. \bullet
- Experimental investigation of imbibitions, relative permeability hysteresis and capillary trapping
- $\bullet\,$ Image the displacement front
- Measure of the relative permeability curve on "real samples" (e.g Otway project, Australia)

- AKNOWLEDGMENTS -

- Sally Benson
- Global Climate and Energy Project at Stanford
- Organizing committee of the CCS conference